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The trinuclear cyclic AuI compounds [Au(µ-C2,N3-bzim)]3
(bzim)1-benzylimidazolate),1, and [Au(µ-C,NsC(OEt)dNC6H4-
p-CH3)]3, 2, have been shown1,2 to interact with metal cations
such as AgI and TlI to form “sandwich” complexes in which six
AuI atoms from two trinuclear gold molecules bond to the AgI

or TlI. Furthermore, the sandwich units stack to form linear chains
with intermolecular aurophilic AuI-AuI bonding between four
of the six AuI atoms in adjacent units. Without the cations present,
the trinuclear AuI complexes of this type generally are not
stacked,3 although one compound, [Au(µ-C(OMe)dNCH3)]3, is
known to stack,4 and2 exists as a dimer with two aurophilic AuI-
AuI bonds.5 The stacked compound discovered by Balch produces
a very unusual photoluminescence called “solvoluminescence”
upon contact with solvent.4

Since the trinuclear AuI compounds interact with cations in a
similar manner to the cation-π interactions studied by Dough-
erty,6 and since Hawthorne7 and others8 have demonstrated that
polynuclear mercury complexes form crown compounds with
anions and various organic and aromatic organometallic substrates,
it seemed plausible that acid-base stacking might occur between
the trinuclear HgII complex [Hg (µ-C,C-C6F4)]3, 3, and the
trinuclear AuI complexes. Herein we describe the result of this
molecularπ acid-base chemistry between the bases1 and2 and
the acid3, their optical properties, and our theoretical interpreta-
tion of the observations.

The synthesis of the stacked molecular acid-base crystals
resulted from the addition of a solution of1 or 2 in CH2Cl2 to a
solution of3 in CH2Cl2. An immediate formation of a white 1:1
precipitate occurs, which was separated from the solvent by
centrifugation.9 Recrystallization from acetone/hexane affords
crystals suitable for X-ray structural determination and spectro-
scopic studies. The structures of{[Au(µ-C3,N3-bzim)]3}2[Hg-
(C6F4)]3, 4, and{[Au(µ-C(OEt)dNC6H4-p-CH3)]3}2[Hg(C6F4)]3,

5, are presented in Figure 1, with the pertinent crystallographic
data given below.10

Upon reaction with the trinuclear HgII complex3, the trinuclear
AuI complexes1 and 2 stack, incorporating3 into the chain,
sandwiched between AuI units. This forms an [Au3Hg3Au3]n repeat
pattern with aurophilic interactions. The intermolecular Au‚‚‚Au
distances between the four aurophilically bonded AuI atoms (ca.
3.3-3.5 Å) are typical of those distances found in other AuI

complexes having such bonding. The HgII atoms interact with
the AuI atoms in adjacent rings with Hg‚‚‚Au distances as short
as 3.27 and 3.24 Å in4 and5, respectively. Gabbai et al. have
observed that benzene produces a 1:1π stacked complex with3,
in which each C-C bond in benzene interacts with a different
Hg(II) center.8,11
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Figure 1. Thermal ellipsoid drawings (40% probability) of the repeating
structure of5 (top) and the extended-chain structure of4 (bottom). For
clarity, the H and F atoms are omitted, and the tolyl groups in5 are
represented by R.
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Figure 2 shows the electrostatic potentials mapped on the
electron density surfaces of1 (bottom) and3 (top) according to
DFT calculations12 using Gaussian 98.13,14 The figure clearly
shows positive values for the electrostatic potential12 at the center
of the ring of3, while negative values are shown at the center of
the ring of1. Similar figures for the electrostatic potential surfaces
in space (not shown) show positive electrostatic potential values
above and below the plane of the ring of3, while similar regions
in 1 have negative values.These results clearly demonstrate the
electrostatic nature of the interaction between the mercury ring

and the gold rings. DFT calculations for2 have given qualitative
results similar to those described here for1.

Crystals of the mixed-metal compounds are luminescent at both
ambient and cryogenic temperatures. The emission intensity
increases drastically upon Hg-Au interaction. As a representative
example, Figure 3 shows the photoluminescence spectra for
crystals of2 and5 at 77 K. A blue luminescence is observed for
2. The spectrum shows vibronic structure with an average spacing
of ∼(1.4 ( 0.2) × 103 cm-1, corresponding to a progression in
theVCdN vibrational mode of the carbeniate ligand as determined
from the infrared spectrum (∼1500 cm-1). This vibronic pattern
indicates that the HOMO has a strong C-N ligand character. The
presence of well-resolved, structured luminescence has allowed
us to determine that the emission and excitation peaks correspond
to the 0-1 vibronic transitions, indicating a small Stokes shift
and consistent with fluorescence.

Complex5 exhibits a very strong green luminescence even at
ambient temperature, and the spectrum also shows vibronic
progression inVCdN, albeit less resolved than the spectrum for2.
The formation of the stacked adduct here leads to red shifts in
the luminescence excitation and emission peaks by∼2.8 × 103

and 3.7× 103 cm-1, respectively, indicating increased metallo-
philic bonding in both the ground and excited states. Similar
stabilizations have been observed upon interaction of1 and 2
with TlI and AgI.1

In conclusion, acid-base interactions between neutral trinuclear
complexes of AuI and HgII lead to the formation of a new class
of sandwich complexes. The supramolecular chains formed are
stabilized by electrostatic interactions between the Hg3 and Au3

units, and by aurophilic bonding between adjacent Au3 units. The
optical properties of the stacked compounds are promising for
optoelectronic applications.
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Figure 2. Electrostatic potential values mapped on electron density
surfaces of1 (bottom) and3 (top) according to DFT calculations.12

Figure 3. Photoluminescence spectra for crystals of2 (bottom) and5
(top) at 77 K.
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